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On the absolute instability of the triple-deck
° ow over humps and near wedged trailing edges

By J. S. B. Gajjar a n d M. T �urkyilmazo~gl u

Department of Mathematics, University of Manchester,
Oxford Road, Manchester M13 9PL, UK

The triple-deck equations for the ®ow over a hump, a corner and a wedged trailing
edge are solved numerically using a novel method based on spectral collocation. It
is found that for the ®ow over a corner, separation begins at a scaled angle ­ of
2.09, and for the wedged trailing edge for a wedge angle of 2.56. Here ­ is de­ ned in
terms of the small physical angle ¿ by ­ = Re1=4 ¶ ¡1=2 ¿ , ¶ = 0:3320, and Re is the
Reynolds number. The absolute instability of the nonlinear mean ®ows computed is
investigated. It is found that the ®ow over a hump is inviscidly absolutely unstable
with the maximum absolute unstable growth rate occurring near the maximum height
of the hump, and increasing with hump size. The wake region behind the wedged
trailing edge is also found to be absolutely unstable beyond a critical wedge angle,
and the extent of the region of absolute instability increases with increasing wedge
angle and separation.

Keywords: boundary layer; separation; stability; triple deck

1. Introduction

It has been known since Goldstein’s (1930) paper that classical boundary-layer the-
ory breaks down near the trailing edge of a ­ nite ®at plate, owing to the presence of
a large induced pressure gradient there. In order to properly account for this singular
behaviour and provide continuation of the Blasius solution into the wake, new scal-
ings need to be introduced. Stewartson (1969, 1970), Neiland (1969) and Messiter
(1970) have derived a rational asymptotic expansion of the ®ow variables near the
trailing edge, and the resulting disturbance structure that they discovered is known
as the triple-deck structure. The same structure arises in many other related contexts
including near the separation point in an adverse pressure gradient boundary layer,
in shock-wave boundary-layer interactions, and in the stability of boundary layers.
A comprehensive account of the origins and applications of triple-deck theory may
be found in Stewartson (1974, 1981), Smith (1982) and Sychev et al. (1998).

Our concern in this paper is primarily with the ®ow near the trailing edge of
a wedge-shaped aerofoil. Various numerical methods have been developed to solve
the equations governing triple-deck viscous{inviscid interaction problems. For the
trailing-edge ®ow, the presence of an abrupt discontinuity in the boundary condi-
tions at the trailing edge, and also the interaction law relating the pressure and the
displacement thickness of the boundary layer for subsonic ®ow, makes the numerical
treatment of the equations considerably di¯ cult. Daniels (1974a; b) solved the equa-
tions using a numerical marching procedure to calculate the symmetric ®ow near the
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trailing edge of a ®at plate at zero incidence and the asymmetric supersonic ®ow
over a ®at plate at an angle of attack. He also computed asymptotic solutions for
near-trailing-edge and downstream ®ow. The ­ rst numerical solution of the interac-
tion problem for subsonic ®ow near the trailing edge of a ®at plate was given by
Jobe & Burggraf (1974). They proposed a combined inverse method in which, for
a given displacement distribution, the pressure was computed and the displacement
updated using this new pressure. Their calculations showed that an acceleration of
the ®uid ahead of the trailing edge of the plate is always present due to the singu-
lar behaviour of an adverse pressure gradient. Chow & Melnik (1976) applied this
method for calculating the asymmetric ®ow over the trailing edge of a ®at plate at an
angle of attack. Smith (1974) developed a two-region matching procedure that very
closely follows the mathematical development of the double-layered solution near the
singularity. Making use of this method, he solved the problem of slot injection into
the ®uid from a ®at plate. Daniels (1974a; b) exploited this technique for trailing-edge
®ows.

The numerical solution of the nonlinear interaction problem was also obtained
by Ruban (1976, 1977). His numerical method was based on solving the boundary-
layer equations for a given displacement thickness and combined with the method
of Jobe & Burggraf (1974). Using this method, Ruban (1976, 1977) calculated sep-
aration occurring around a surface irregularity and near the trailing edge of a thin
symmetric aerofoil. Later, both Ruban & Sychev (1979) and Smith & Merkin (1982)
investigated the triple-deck ®ow around a wedge-shaped trailing edge. The latter also
extended their studies to the viscous{inviscid interaction due to a small hump and
convex/concave corners. They transformed the in­ nite physical domain completely
into a ­ nite range of streamwise integration, and simple transformations were made
for the pressure and displacement function to prevent the original unbounded growth
of these two functions. They investigated separation taking place in an incompress-
ible ®ow near a corner of a body, near the wedge-shaped trailing edge of a thin
aerofoil, and some other external ®ow structures. Their results predicted the scaled
angles ­ , 2:51, ¡ 5:21 and 2:38, for the onset of the separation at a concave corner, a
convex corner, and a wedged trailing edge, respectively. The ­ rst and last values are
somewhat di¬erent from the corresponding values of 2.0 and 2.6 that were computed
by Ruban (1976, 1977) and also given in Sychev et al. (1998).

The calculations performed by Ruban (1976, 1977), Ruban & Sychev (1979) and
Smith & Merkin (1982) were based on the use of iterative schemes which became
divergent when the region of recirculating ®ow was su¯ ciently large. To study the
behaviour of the solution at larger values of ­ for the corner ®ow, Korolev (1991,
1992) employed a direct method and calculated a recirculating zone up to ­ = 7. A
further increase in ­ created a singularity in the skin friction immediately ahead of
the attachment point, and thus made the use of interaction theory invalid.

Also of great interest is the stability of the locally distorted steady or unsteady sep-
arated ®ow motions. In addition to the Tollmien{Schlichting modes of instability, the
triple-deck solutions admit in®ectional velocity pro­ les which are susceptible to an
inviscid Rayleigh-type instability. Rayleigh instability has typical length-scale much
shorter than that of Tollmien{Schlichting instability and represents a bursting phe-
nomenon due to the fairly sudden production of faster spatial and temporal growth
e¬ects. Smith & Bodonyi (1985) have shown that the triple-deck solutions over a
mounted-surface obstacle are subjected to a short-scale Rayleigh-type instability,
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provided that the obstacle size is su¯ ciently large to generate nonlinear solutions.
Using temporal stability theory, they have computed the temporal growth rates at
di¬erent locations corresponding to ®ow-reversal regions. Duck (1985, 1988) has also
encountered an in®ectional instability in unsteady incompressible boundary-layer
®ow computations, which manifested itself in such a way that large wavenumbers
were excited by surface distortions, leading to the breakdown of the solution as a
­ nite time is approached.

The present work is concerned with the triple-deck ®ows over humps, a concave
corner, and wedged trailing-edge con­ gurations. There are several main objectives.
The ­ rst is to develop a viscous{inviscid interaction code using spectral methods,
which have the distinct advantage that greater accuracy is easily obtained with only
a modest increase in the number of points used. Another aim is to compute solutions
for the wedged trailing-edge ®ows with the scaled angle parameter ­ larger than
those previously computed. Another aspect of the current work is to resolve the
controversy in the di¬erence, as far as the critical angle at the onset of separation is
concerned, between the two sets of results given by Ruban (1976, 1977) and Smith &
Merkin (1982). Finally, the work of Smith & Bodonyi (1985) suggests the occurrence
of Rayleigh instability for some classes of nonlinear triple-deck mean ®ows. It is well
known that many pro­ les involving back®ow and separation are prone to absolute
instability (see Huerre & Monkewitz 1990; Gaster 1984). Another objective is, thus,
to examine the inviscid stability of some of these mean ®ows and to investigate
whether these ®ows are absolutely unstable or not.

In x 2, the triple-deck equations governing the ®ow in the vicinity of the trailing
edge are given and brief details of the numerical method are outlined. Our mean-®ow
calculation results are presented in x 3. Some stability results are given in x 4. Finally,
a summary and conclusions are given in x 5.

2. Problem formulation and solution of the triple-deck equations

Triple-deck theory divides the main region of the ®ow into three subregions, namely
the lower, main and upper decks. The governing equations in each of these regions
are given in Smith (1982) and Sychev et al. (1998). In order to construct uniformly
valid composite solutions, which are used for the stability computations, we will be
interested in the expansions in the main and lower decks only. Note that the contri-
bution to the composite solution from the upper deck will be disregarded, because
the e¬ects there are small, O(Re¡1=4), where Re denotes the Reynolds number based
on the chord-wise extent of the aerofoil.

Consider now a thin symmetric aerofoil, with a sharp wedge-shaped trailing edge,
placed in an incompressible ®uid ®ow.

We assume that the undisturbed freestream uniform ®ow is parallel to the aerofoil’s
chord-line. Later we select an orthogonal curvilinear coordinate system aligned with
the body surface such that the wake centreline is in the streamwise direction. We
con­ ne ourselves to the consideration of only the upper plane, i.e. y > 0, taking into
account the symmetry.

The two regions|namely main and lower decks|are depicted in ­ gure 1 for a
wedged trailing edge having a typical wedge angle ¿ . The problem of ­ nding the
asymptotic solution to the Navier{Stokes equations for the speci­ c ®ow is tackled
using the well-known triple-deck analysis under the limit Re ! 1. The full analysis
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Figure 1. Triple-deck region and scalings are shown in the vicinity of the trailing edge of a wedged
shape. ¿ is the wedge angle and is related to scaled wedge angle parameter ­ by ­ = ¶ ¡ 1 =2 Re1= 4 ¿ .

leading to the triple-deck equations governing the subsonic interaction problem may
be found in Stewartson (1969, 1974), Smith & Merkin (1982) and Sychev et al.
(1998).

(a) Main-deck solution

In this region the boundary-layer coordinate Y is linked to the physical coordinate
y by the relation y = Re¡1=2Y . Since we assume that the aerofoil is very thin, the
velocity at the outer edge of the boundary layer is not very di¬erent from the velocity
of the oncoming ®ow. Therefore, the leading term of the velocity expansion in this
regime coincides with the Blasius solution, denoted by UB below. Without going
into much detail, we write the leading- and second-order expansions for the total
streamwise velocity distribution only in the form

U = UB(Y ) + Re¡1=8(A(X) + H(X))U 0
B(Y ): (2.1)

Here, in the second term, ¡ A(X) denotes the local displacement e¬ect of the bound-
ary layer in the viscous{inviscid interaction, and H(X) represents the in®uence of
the pro­ le thickness on the ®ow in the boundary layer.

(b) Lower-deck solution

Here, y = Re¡5=8 ·Y and, applying the Prandtl transposition theorem, the triple-
deck equations in terms of the stream function Á governing the lower-deck reduce
to

@Á

@ ·Y

@2Á

@x@ ·Y
¡ @Á

@x

@2Á

@ ·Y 2
= ¡ @P

@x
+

@3Á

@ ·Y 3
: (2.2)

The boundary conditions for the trailing-edge ®ow are

Á =
@Á

@ ·Y
= 0 at ·Y = 0; x < 0; Á =

@2Á

@ ·Y 2
= 0 at ·Y = 0; x > 0; (2.3)

Á = 1
2
( ·Y + A(x) + H(x))2 as ·Y ! 1; Á ! 1

2
·Y 2 as x ! ¡ 1: (2.4)

In the above, x = ¶ ¡5=4X with X being the streamwise triple-deck scale, ¶ = 0:3320,
and the conditions in equations (2.3){(2.4) correspond, respectively, to no-slip, wake
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symmetry, condition of matching, and merging with the Blasius solution. The viscous
triple-deck problem is closed by the relation

@P

@x
=

1

º

1

¡ 1

A00( ± )

x ¡ ±
d ± ; (2.5)

between the pressure P (x) and the displacement function A(x). Also note that even
though the governing equation (2.2) is parabolic, the pressure{displacement interac-
tion law (2.5) makes the whole problem elliptic.

The analytical structure of the underlying problem for the interaction region in
a variety of physical situations leads, almost invariably, to the same fundamental
equation (2.2) with only a small change necessary in the boundary conditions. Com-
putations in this paper have been performed with the shape function characterizing
the form of the trailing edge given by

H(x) =
¡ ­ x for x < 0;

0 for x > 0:
(2.6)

The large asymptotic behaviour of the displacement function, as well as the pres-
sure far upstream and downstream of the aerofoil, can be derived as in Sychev et al.
(1998), and they are

A(x) ! ­ x + O(x¡1=3); x ! ¡ 1; A(x) ! ® x1=3; x ! 1; (2.7)

P (x) ! ¡ (­ =º ) ln(x); x ! §1; (2.8)

where ® = 0:89 and ­ is the scaled wedge angle, which is connected to the physically
small angle ¿ through ­ = Re1=4 ¶ ¡1=2 ¿ .

Numerical solutions were also obtained for the triple-deck ®ow over humps and
near a concave corner, for which the shape function H(x) is given by

H(x) =
0 for x < 0;

­ x for x > 0:
(2.9)

The hump shape is de­ ned as in Smith & Bodonyi (1985):

H(x) =
h(1 ¡ x2)2 for ¡ 1 < x < 1;

0 elsewhere.
(2.10)

The boundary conditions (2.3) and the far-downstream asymptotes (2.7), (2.8) for the
®ow over a corner and hump are also suitably modi­ ed, and are given, for example,
in Smith & Merkin (1982). In (2.9) and (2.10), ­ is a scaled corner angle, and h a
scaled hump size parameter.

(c) Numerical method of solution

For the numerical treatment of the trailing-edge ®ow problem just described, we
map the in­ nite physical region onto a ­ nite computational domain by the transform
x = tan(Z), so that the constraints far upstream and far downstream could be set
exactly at Z = § 1

2
º , where jxj ! 1, and the irregular behaviours are treated
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adequately in equation (2.7). In order to avoid the growing properties of the thickness
and the pressure in (2.7) and (2.8), we introduce the following transformations:

A =
­

º
[x( 1

2
º ¡ Z)] +

2®

31=2
(1 + x2)1=6 sin( 1

6
(5 º ¡ 2Z)) + As ;

P = ¡ ­

2º
ln(1 + x2) +

­

º (1 + x2)
¡ 2 ®

33=2
(1 + x2)¡1=3 cos( 1

3
( º + 2Z)) + P s :

(2.11)

This idea was originally introduced in the triple-deck study of Smith & Merkin
(1982). Note that with these transformations, P s and ¡ dA s = dx remain conjugate
pairs and the inviscid interaction law then becomes

P s =
1

º

º =2

¡ º =2

A0
s ( ± )

tan(Z) ¡ tan( ± )
d ± : (2.12)

Working with As instead of A ensures that As decays asymptotically as Z ! § 1
2
º ,

so that the integral equation (2.12) may be handled in a more systematic manner. In
this way, the elliptic inviscid law is treated with a method introduced by Veldman
(1979) in which the integration (2.12) is carried out at N local points leading to

P s (xj) =

N

i= 0

­ ijA s i;

where

­ ij =

¡ f1j ; i = 0;

fi¡1j ¡ fij ; 1 6 i 6 N ¡ 1;

fN¡1j ; i = N;

and fij = [tan(xj) ¡ tan(xi + (1=2))]
¡1. We choose this kind of approximation to the

integral owing to the fact that it handles the singularity e¬ectively by using implicit
approximation of the interaction condition (2.12), and it remains superior to the
other known methods, the so-called inverse or semi-inverse iterative methods, as far
as the convergence rate is concerned.

The nonlinear interaction equation (2.2) is ­ rst di¬erentiated with respect to ·Y to
eliminate the pressure gradient. To complete the system we need one more equation,
which may be obtained from equation (2.2) by setting ·Y = 0. For the trailing-edge
®ow, for instance, we obtain:

Px =
Á000(0); x 6 0;

Á000(0) ¡ Á0(0)Á0
x(0); x > 0:

(2.13)

Equations (2.2){(2.13) are discretized using a Chebyshev collocation method (see,
for example, Canuto et al. 1988) in the ·Y -direction, after truncating the semi-in­ nite
physical domain at a value ·Ym ax and mapping onto the [ ¡ 1; 1] Chebyshev compu-
tational domain by means of a linear transformation. Standard second-order ­ nite
di¬erences are used for the x-derivatives. This yields a nonlinear system, which is
then linearized with a suitable initial guess using the Newton linearization technique.
Finally, the resulting linear system together with the boundary conditions are com-
bined in a generalized matrix form, which is then solved using LU decomposition.
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Figure 2. Corner-° ow results are shown for a various values of ­ . (a) Skin friction along the
surface of the plate, (b) pressure distribution, and (c) displacement function.

3. Mean-° ow results

The numerical results obtained by solving the fundamental triple-deck equations are
presented in this section. Typically, 200 streamwise locations in the ­ nite interval
[ ¡ 1

2
º ; 1

2
º ] and 64 Chebyshev collocation points were used. The edge of the outer

boundary ·Ym ax was chosen to be 10 for all the calculations. To check on the e¬ect of
the computational grid, these parameters were halved or doubled accordingly for each
®ow calculation. The code was ­ rst veri­ ed by computing results for the triple-deck
®ow over a corner and also the triple-deck ®ow over a hump.

A numerical solution of the nonlinear interaction problem for both cases has also
been obtained by Ruban (1976, 1977). Smith & Merkin (1982) extended the calcu-
lations for larger values of ­ and h. Our results are shown in ­ gures 2 and 3.

In general, good agreement is found with the results of Ruban (1976, 1977), Smith
& Merkin (1982) and Smith & Bodonyi (1985). However, Ruban (1976) concluded
that in the case of a concave corner, ®ow separation ­ rst appears when ­ = 2 (see
also Sychev et al. 1998). Yet from the calculations of Smith & Merkin (1982) (see
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Figure 3. Results for the ° ow over the hump de¯ned by (2.10) are shown for a various values of
h. (a) Pressure distribution, (b) displacement function, and (c) skin friction.

­ g. 5 in their paper), separation is found to occur at a larger value of ­ = 2:51. From
our calculations we ­ nd that separation is encountered around ­ = 2:09, which is
relatively close to the value found by Ruban.

(a) Wedged trailing-edge results

Calculations were next carried out for the wedged trailing-edge ®ow. Figure 4
shows the distribution of the skin friction and centreline velocity along the wake axis
of symmetry for a range of values of scaled wedge angle ­ between 0 and 3.8. As ­
increases, separation occurs and a recirculating zone of ®uid particles appears in the
vicinity of the trailing edge, the extent of which increases with increasing ­ . From
­ gure 5a the critical parameter leading to a change from attached to separated ®ow
appears, from our calculation, to be 2.56, which is in quite good agreement with the
value of 2.6 obtained by Ruban (1977). Smith & Merkin (1982) found that separation
­ rst occurs for ­ = 2:38 for the same reduced shape (see ­ g. 7 in their paper). The
corresponding dependence of the distribution on the pressure as well as the displace-
ment thickness on x for given values of ­ is shown in parts (b) and (c) of ­ gure 5.
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Figure 4. Skin friction on the plate and centreline velocity along the wake
are shown for a range of values of wedge angle parameter ­ .

Overall, these results agree well with the published results of Jobe & Burggraf (1974)
and Ruban (1977), but di¬er from Smith & Merkin (1982), particularly for values of
­ close to separation. It is noted that our method of solution is di¬erent from those of
Ruban (1976, 1977) and Smith & Merkin (1982). In our method we used Chebyshev
collocation to approximate the vertical derivatives instead of ­ nite di¬erencing used
in those latter papers. We believe that the di¬erences between the results of Smith
& Merkin (1982) and our results arise from errors introduced in the transformed
wake symmetry boundary conditions that Smith & Merkin (1982) employed in their
calculations.

An increase in the parameter ­ leads to the pressure gradient becoming adverse
and the separated ®ow region is pushed upstream ahead of the trailing edge. Although
the recirculating region gets widened, the ®uid particles here possess a comparably
small value of velocity. We were only able to compute the solutions up to ­ = 3:8,
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Figure 5. Wedged trailing-edge ° ow results are shown for a range of values of ­ . (a) Variation
of the minimum value of the skin friction with respect to ­ , (b) pressure distribution, (c)
displacement function.

after which our numerical procedure failed. As seen from ­ gure 5a, the minimum
skin friction reaches a minimum and then shows a tendency to increase slightly
as ­ approaches 3.8. This sort of phenomenon is also encountered in the work of
Korolev (1991, 1992) for the corner ®ow and he explains this behaviour as hysteresis,
implying non-existence of the solutions beyond this critical value. It also implies that
the solution of the interaction problem may exist only within a certain range of the
angle parameter ­ , and multiple solutions of the problem beyond this range may be
possible. It would be useful to extend these calculation using more direct methods
(as in Korolev (1992)) and study possible hysteresis e¬ects of the separated ®ow.

(b) Composite solutions

Having solved the triple-deck equations, it is now an easy task to construct asymp-
totic composite solutions uniformly valid in the triple-deck region. Due to small con-

Phil. Trans. R. Soc. Lond. A (2000)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Absolute instability of triple-deck ° ows 3123

tributions from the upper-deck expansion, only the main-deck and lower-deck solu-
tions will be considered in the formation of a composite solution. It will, however,
be Reynolds number dependent, and here we suppose that the Reynolds number is
measured based on the main chord-line length of the aerofoil. Let Um denote the
main-deck solution given by (2.1), Ul the lower-deck solution to be obtained from
(2.2){(2.5), and Um tc the matching between them. Upon matching the viscous wall
layer solution with (2.1) we ­ nd that

Um tc(Y ) = ¶ (Y + Re¡1=8(A(X) + H(X))) as Y ! 1: (3.1)

Taking into account that ·Y = Re1=8Y , where ·Y is the lower-deck boundary-layer
scale, we obtain the solution for the composite expansion as

U (Y ) = UB(Y ) + Re¡1=8(A(X) + H(X))U 0
B(Y ) + Re¡1=8Ul(Re1=8Y )

¡ ¶ (Y + Re¡1=8(A(X) + H(X))): (3.2)

Notice that this solution satis­ es the matching requirement used in the boundary
condition (2.4), as well as U(Y = 0) = 0 and U (Y ! 1) ! 1.

Sample composite mean velocity pro­ les obtained from equation (3.2) for Re = 500
are shown in ­ gure 6 for the wedged trailing-edge ®ow. Each graph here corresponds
to ¬ ? = 0, 0:5, 1:5 and 2, respectively, where ¬ ? =

p
¶ ­ . It is seen that these pro­ les

correspond to the Gaussian type of wake pro­ les far downstream. One can also
see from the third portion of ­ gure 6 that the ®ow separation has already started at
¬ ? = 1:5. Therefore, the triple-deck velocity pro­ les obtained here have the advantage
that the linear stability properties may be investigated even for the regions of ®ow
reversal. This is discussed in the next section.

4. Absolute instability results

Smith & Bodonyi (1985) have shown that the triple-deck pro­ les in the boundary-
layer ®ow past an obstacle on a surface are inviscidly unstable. Because the triple-
deck solutions in the separation zone for this kind of ®ow give rise to in®ectional
pro­ les, they were able to compute the inviscid instability properties, on the grounds
that the lower-deck modes have spatial or temporal growth rates much higher than
those associated with the main- or upper-decks, due to the in®ectional velocity pro-
­ les having the shortest scale in physical variables x and y (both O(Re¡5=8). This
leads to the inviscid Rayleigh equation (see Smith & Bodonyi 1985). The nonlinear
results presented in Duck (1985, 1988) indicated that rapid growth of the spectral
solution occurs for large wavenumbers, suggesting the development of a short-scale
Rayleigh-type instability. Taking this into account, we ­ rst attempted to investigate
whether the wedged trailing-edge ®ow also has in®ectional lower-deck velocity pro-
­ les. However, these pro­ les do not appear to have any in®ection points. This may be
solely because acceleration of the ®uid particles is possible in the trailing-edge ®ow,
whereas acceleration of the ®uid particles over the obstacle, followed by deceleration,
seemingly raises the occurrence of in®ectional points in the boundary-layer ®ow past
wall distortions.

The presence of in®ectional instability suggests the possibility that absolute insta-
bility may also exist. The lower-deck velocity pro­ les for the ®ow over the hump
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Figure 6. Composite velocity pro¯les of the wedged trailing-edge ° ow are shown for Re = 500.
Curves correspond to the x locations (from left to right) ¡32:0, 0:01, 0.5, 1.0, 1.5, 3.1 and 5.2,
respectively.

shape (2.10) were investigated using our inviscid Rayleigh equation solver. In ­ g-
ure 7a the presence of a saddle-point-type phenomenon is demonstrated. Figure 7b
shows that the saddle point in ­ gure 7a is a pinch point with !i > 0, suggesting
absolute instability. Here ! = !r + i!i, ¬ = ¬ r + i ¬ i are the scaled complex frequency
and wavenumber of the disturbances, respectively. In ­ gure 7c; d, branch points are
given in the ¬ ; !-planes for di¬erent hump sizes.

According to ­ gure 7c, the instability starts almost at the peak point for each
hump size and extends far downstream of the hump. Increasing the disturbance
height also causes an increase in the absolute growth rate of the disturbances, as
might be expected physically. We suggest, therefore, that the instability observed by
Duck (1985, 1988) leading to a ­ nite-time breakdown of the lower-deck boundary-
layer solution may be related to the absolute instability found here.

The ®ow in the vicinity of the trailing edge changes most rapidly, and, therefore, it
might be expected that the viscous triple-deck region close to the trailing edge would
exhibit a strong in®uence on the stability properties. For this reason the composite
basic velocity pro­ les obtained from the triple-deck mean ®ow are considered next.
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Figure 7. A branch point satisfying the pinching criterion is shown ((a) and (b)) in the ¬ - and
!-planes, for hump height h = 2 and x station x = 0:94. Pinching occurs at ¬ = (0:21; ¡0:08)
and ! = (0:8; 0:07). (+) and (¡) show, respectively, increasing and decreasing !i . Branch points
are demonstrated ((c) and (d)) along the triple-deck region in the ¬ - and !-planes for hump
sizes h = 2, 2.5, 3 and 3.5, respectively.

As displayed in ­ gure 6, the composite velocity pro­ les apparently have in®ectional
points somewhere in the middle of the boundary layer. This motivated us to explore
the inviscid instability characteristics of such pro­ les. These pro­ les were fed into the
inviscid Rayleigh solver and afterwards branch points were located. An initial search
for branch points on the wedge ahead of the trailing edge did not yield any absolutely
unstable branch points, suggesting that the ®ow on the wedge is only convectively
unstable. Figure 8 shows branch points that satisfy the Briggs{Bers criterion for the
®ow in the wake. (In the wake region there is a change in the boundary conditions
and results are shown for disturbances that satisfy the condition of zero pressure on
the centreline.) The solid curves are for Re = 500, the dashed curves for Re = 1000,
and the dotted ones for Re = 10000, plotted for several values of the parameter ¬ ?.
It is seen that for ¬ ? larger than 0.5 the wake is absolutely unstable.

We also observe from ­ gure 8 that, for the zero pressure gradient case, there is
only convective instability (!i < 0), in contrast to the suggestions made by Woodley
& Peake (1997), who speculated that the double Blasius pro­ le might be absolutely
unstable. The e¬ect of increasing the wedge angle is to have a higher absolute growth
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Figure 8. Absolute instability range for the ° ow over a wedged trailing edge is shown along the
triple-deck region for several values of parameter ¬ ? . Solid lines denote Re = 500, dashed lines
denote Re = 1000, and dotted lines denote Re = 10 000.

rate and to make the region of absolute instability much wider. This also implies that
separation ensures the existence of absolute instability by enhancing the instability
region, at least for the underlying picture of the boundary-layer ®ow considered here.
Increasing the wedge angle parameter ­ is akin to increasing the aerofoil thickness,
which is likely to promote stronger separation.

5. Summary and conclusions

In this paper we have considered both the solutions of the triple-deck equations and
the stability of the solutions for the ®ows over a wall irregularity, a corner, and a
wedged trailing edge. The calculations show that separation from the surface of the
body begins, respectively, at ­ = 2:09 and 2.56 for the corner and wedged trailing
edge. These values have been found to compare well with the ones obtained by
Ruban (1976, 1977). The maximum wedge angle for which we were able to obtain
results is ­ = 3:8. The work of Korolev (1991, 1992) would suggest that separation
hysteresis may arise after this critical value. Our inviscid stability results have shown
that absolute instability exists in the triple-deck ®ow over the hump and in the wake
region behind a wedged trailing edge.

Composite basic velocity pro­ les have been constructed for a wedged trailing edge,
including some wedge angles leading to ®ow separation. The double Blasius pro­ le
that was suggested to be absolutely unstable by Woodley & Peake (1997) has been
found to be convectively unstable in the triple-deck region. Other composite velocity
pro­ les have been found to exhibit similar absolute instability characteristics, as
found from the pro­ les from the classical boundary-layer equations. We have found
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that increasing the wedge angle creates a zone of separated ®ow which in turn ensures
a much larger extent of absolutely unstable ®ow only behind the trailing edge.

The current method can also be used to solve the triple-deck equations for the
supersonic corner and wedged trailing-edge ®ows. For the supersonic ®ows, the prob-
lem reduces to an even simpler partial di¬erential form, since the global interaction
law is replaced by Ackeret’s formula. Work on computing solutions for the supersonic
®ow and for non-aligned aerofoils is currently in progress (see also T�urky± lmazo~glu
et al. 1999).

The authors have bene¯ted from discussions with Professor Anatoly Ruban on his and the
current work.

References

Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zang, T. A. 1988 Spectral methods in ° uid
dynamics. Springer.

Chow, R. & Melnik, R. E. 1976 Numerical solutions of the triple-deck equations for laminar
trailing-edge-stall. Lecture Notes in Physics, vol. 59, pp. 135{144. Springer.

Daniels, P. G. 1974a Numerical and asymptotic solutions for the supersonic ° ow near the trailing-
edge of a ° at plate. Q. J. Mech. Appl. Math. 27, 175{191.

Daniels, P. G. 1974b Numerical and asymptotic solutions for the supersonic ° ow near the trailing-
edge of a ° at plate at incidence. J. Fluid Mech. 63, 641{656.

Duck, P. W. 1985 Laminar ° ow over unsteady humps: the formation of waves. J. Fluid Mech.
160, 465{498.

Duck, P. W. 1988 The e® ect of small surface perturbations on the pulsatile boundary layer on
a semi-in¯nite ° at plate. J. Fluid Mech. 197, 259{293.

Gaster, M. 1984 Stability of velocity pro¯les with reverse ° ow. In Proc. IUTAM Symp. on
Laminar{Turbulent Transition, pp. 212{215.

Goldstein, S. 1930 Concerning some solutions of the boundary layer equations in hydrodynamics.
Proc. Camb. Phil. Soc. 26, 1{30.

Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing ° ows.
A. Rev. Fluid Mech. 22, 473{537.

Jobe, C. E. & Burggraf, O. R. 1974 The numerical solution of the asymptotic equations of
trailing-edge ° ow. Proc. R. Soc. Lond. A 340, 91{111.

Korolev, G. L. 1991 Flow separation and the non-uniqueness of the solution of the boundary
layer equations. Comp. Math. Math. Phys. 31, 73{79.

Korolev, G. L. 1992 On the non-uniqueness of separated ° ow around corners with small turning
angle. Fluid Dyn. 27, 442{444.

Messiter, A. F. 1970 Boundary layer ° ow near the trailing-edge of a ° at plate. SIAM J. Appl.
Math. 18, 241{257.

Neiland, V. Y. 1969 On the theory of laminar boundary layer separation in supersonic ° ow. Izv.
Akad. Nauk. SSSR 4, 53{57.

Ruban, A. I. 1976 On the theory of laminar ° ow separation of a ° uid from a corner point on a
solid surface. Uch. Zap. TsAGI 7, 18{28.

Ruban, A. I. 1977 On the asymptotic theory of ° uid ° ow near the trailing-edge of a thin airfoil.
Uch. Zap. TsAGI 8, 6{11.

Ruban, A. I. & Sychev, V. V. 1979 Asymptotic theory of incompressible laminar boundary layer
separation. Adv. Mech. 2, 57{95.

Smith, F. T. 1974 Boundary layer ° ow near a discontinuity in wall conditions. J. Inst. Math.
Applic. 13, 127{145.

Phil. Trans. R. Soc. Lond. A (2000)

 rsta.royalsocietypublishing.orgDownloaded from 

http://giorgio.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0066-4189^28^2922L.473[aid=541462]
http://rsta.royalsocietypublishing.org/


3128 J. S. B. Gajjar and M. T�urky³ lmazo~glu

Smith, F. T. 1982 On the high Reynolds number theory of laminar ° ows. IMA J. Appl. Math.
28, 207{281.

Smith, F. T. & Bodonyi, R. J. 1985 On short-scale inviscid instabilities in ° ow past surface-
mounted obstacles and other non-parallel motions. Aeronaut. J. 89, 205{212.

Smith, F. T. & Merkin, J. H. 1982 Triple-deck solutions for subsonic ° ow past humps, step,
concave or convex corners, and wedged trailing-edges. Comp. Fluids 10, 7{25.

Stewartson, K. 1969 On the ° ow near the trailing-edge of a ° at plate. Mathematika 16, 106{121.

Stewartson, K. 1970 On laminar boundary layers near corners. Q. J. Mech. Appl. Math. 23,
137{152.

Stewartson, K. 1974 Multi-structured boundary layers on ° at plates and related bodies. Adv.
Appl. Mech. 14, 145{239.

Stewartson, K. 1981 D’ Alembert paradox. SIAM Rev. 23, 308{343.

Sychev, V. V., Ruban, A. I., Sychev, V. V. & Korolev, G. L. 1998 Asymptotic theory of separated
° ows. Cambridge University Press.

T�urky³ lmazo~glu, M., Gajjar, J. S. B. & Ruban, A. I. 1999 The absolute instability of thin wakes
in an incompressible/compressible ° uid. Theoret. Comput. Fluid Dyn. 13, 91{115.

Veldman, A. E. P. 1979 A numerical method for the calculation of laminar, incompressible
boundary layers with strong viscous{inviscid interaction. Netherlands Nat. Aerospace Report
NLR-Tr, no. 79023.

Woodley, B. M. & Peake, N. 1997 Global linear stability analysis of thin aerofoil wakes. J. Fluid
Mech. 339, 239{260.

Phil. Trans. R. Soc. Lond. A (2000)

 rsta.royalsocietypublishing.orgDownloaded from 

http://giorgio.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0272-4960^28^2928L.207[aid=541341,csa=0272-4960^26vol=28^26iss=3^26firstpage=207]
http://giorgio.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0045-7930^28^2910L.7[aid=541468]
http://giorgio.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0935-4964^28^2913L.91[aid=541471,doi=10.1007/s001620050006,springer=1]
http://giorgio.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0022-1120^28^29339L.239[aid=541472]
http://giorgio.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0272-4960^28^2928L.207[aid=541341,csa=0272-4960^26vol=28^26iss=3^26firstpage=207]
http://giorgio.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0022-1120^28^29339L.239[aid=541472]
http://rsta.royalsocietypublishing.org/

